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1 Introduction
This project is on the topic of equivariant models for geometric

understanding and classification. Equivariance is the property that

transformations of the input should produce the same transforma-

tions in the output and/or latents of the model. This is a useful fact

when reasoning about 3D. For example, even a young child knows

where the parts of an object are when it is translated and rotated

through space. This would be a segmentation problem with 𝑆𝐸 (3)
group invariance.

Similarly, by recent model architectures, we can embed this prop-

erty into neural networks for various scientific and computer vision

tasks. Two very common scientific applications of this property are

in drug design and fluid dynamics, where 3D space as a medium is

more important than the absolute location or orientation of objects.

Another interesting application is in classifying gravitational lenses

due to dark matter from telescope imagery. Here, we look at two

more specific use cases.

It’s somewhat intuitive that orientation is not strictly constrained

in deep space, so that the dark matter whose gravity bends light

in astronomical images can be in any variety of positions. To cor-

rectly identify the substructure of dark matter, our classification

architecture can benefit greatly from being equivariant to rotation

and orientation.

As a broader use case, with applications in all areas of science,

these models can be used to solve PDEs on irregular domains like

spheres. Here again, note that equivariant architectures require an

abstract understanding of geometry in the model, free from coor-

dinates. Thus, they can be much better suited to solving complex

dynamical systems over irregular domains, as compared to a model

which solves with no understanding of the underlying geometry.

On the motivation of this work – my deep learning background

comes almost entirely from computer vision, which was the topic

of my summer research. However, while there, I learned about

equivariant learning for catalyst material screening in 3D. There

were other projects ongoing as well about equivariant diffusion for

3D object generation from measurements. I found that the strong

inductive priors of geometry made easier many of the inverse prob-

lems I am interested in. Thus, I chose to explore it as the topic of

my project.

project page: vishalchandra.com/#cse598

2 Survey of Related Work
As noted in the introduction, equivariance has widespread applica-

bility in scientific and computing domains. Here, we review recent

literature specifically focused on applications of equivariant meth-

ods to 3D detection and reconstruction tasks. While this is the

motivation for this survey, and for many of the works included,

many other applications arise due to the properties of these meth-

ods. However, the commonality between these works remains in

their approaches to novel-view synthesis and reasoning of 3D ob-

jects from incomplete measurements (often, 2D inputs).

2.1 Equivariance & Pioneering Work
Figure 1 shows a simple diagram known as an “equivariance map".

Let the input mesh be called ®𝑥 . This map simply states that

𝑔(𝑇Z ( ®𝑥)) = 𝑇 X (𝑔( ®𝑥))

Although 𝑇Z
and 𝑇 X

are different operators in different domains,

it is clear that they have the same qualitative effect on the object.

Then, we can restate this more simply: rotating before or after the

process 𝑔 has the same effect. In this case, 𝑔 is the rendering process.

Since rotations and translations form mathematically groups, we

often formally call these properties “special orthogonal" or “spe-

cial euclidean" group equivariant, denoted as 𝑆𝑂 (𝑛) and 𝑆𝐸 (𝑛),
respectively, where 𝑛 is the dimensionality.

Initial work integrating group equivariance into deep learning

was done by Cohen and Welling in [5]. This seminal work inte-

grated 𝑆𝑂 (2) and 𝑆𝐸 (2) equivariance into convolutional neural

networks (CNNs) for image classification tasks. This was done by

implementing “G-convolutions" in place of ordinary ones to make

the network more expressive with no increase to the number of

parameters. The G-convolution is defined as

[𝑓 ∗𝜓 ] (𝑔) =
∑︁
𝑦∈Z2

∑︁
𝑘

𝑓𝑘 (𝑦)𝜓𝑘 (𝑔−1𝑦) (1)

where the traditional “flip" of a convolution has been replaced by

a generalized group operation. The proof of this expression as a

function of only 𝑔 (and hence its equivariance w.r.t. 𝑔) is discussed

at length in the original paper.

Cohen and Welling showed the effectiveness of the “GCNN" on

rotated verisons of the standard CIFAR10 and MNIST datasets. This

sets the stage for equivariant learning across problem disciplines

and across symmetry groups.

2.2 Equivariant Rendering
Some of the early works in 3D equivariant learning focus on neural

rendering, as shown in the example in fig. 1. This seems like a

natural problem, where a neural network responsible for rendering

a body should render the exact transforms applied to the input.

[6] takes this idea and bends it slightly – instead of changing the

object rotation, the rendering should also be equivariant to camera

perspective in the rendered scene. Object orientation and camera

perspective are effectively equivalent for the rendered image. This

is used as a geometric prior to the neural renderer to allow it to
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Figure 1: Rabbit Equivariant Map, taken from [6]

construct 3D from a single input image. Essentially, Dupont et al.

argue that there is no need for a rendering to take on an explicit

representation, so long as they transform in the same way (main-

tain equivariance to camera view). This is formalized as follows:

let 𝑓 : 𝑋 → 𝐿,𝑔 : 𝐿 → 𝑋 be an encoder and decoder between the

image space 𝑋 and the latent space 𝐿. If two input images x1, x2
are rotations of each other, then so should be their corresponding

latents z1 = 𝑓 (x1), z1 = 𝑓 (x2). To enforce this and achieve equiv-

ariance, we rotate both latents by the required amount and obtain

z̃1, z̃2. In an equivariant network, decoding these rotated latents

should yield the alternate image from which it was produced. As a

loss:

L
render

= | |x1 − 𝑔 (̃z2) | | + | |x2 − 𝑔 (̃z1) | |
Using this framework, [6] achieves real time inference and render-

ing of scenes from a single image. As a part of rendering, novel

view synthesis is also possible under this equivariant architecture.

2.3 3D Reasoning from 2D
The novel view synthesis abilities of the neural renderer in [6]

somewhat beg the question of whether 3D rendering can be ben-

efited by equivariance architectures as well. Without geometric

priors, constructing full shape estimates from few- or single-image

inputs is nearly impossible, unless datasets are on a large enough

scale to effectively learn this information implicitly. Klee et al. [10]

introduce a method for 𝑆𝑂 (3) object recognition from single-view

inputs. Since the input is 2D, existing 𝑆𝑂 (3) methods cannot be be

applied because the group action 𝑔 is not defined. To get around

this, the work focuses on on the largest subgroup 𝐼60 ⊂ 𝑆𝑂 (3), and
is thus only approximately equivariant. The method uses a ResNet-

style encoder to generate dense features from an input image, and

then projects the features onto the vertices of an icosaheron. Then,

the method applies a group convolution in the icosahedral domain,

where the signal is learnable and the projected features act as the

filter. This is a very similar formulation as in eq. 1, just with a

realized group and group action. This leads to an approximation of

SO(3) equivariance that allows reasoning in 3D. Surprisingly, the

authors choose to compare their method against baselines with full

3D point cloud inputs, and still find that the reasoning enabled by

this method leads to better performance, despite the much more

constrained input modality.

2.4 Equivariant Transformers
Introduction of SE(3) Transformers The methods described in

previous sections all revolve around clever loss design and embed-

ding equivariance into more traditional neural architectures such

as fully-connected networks and convolutional nets. However, with

the rise of attention mechanisms and the success of transformers, it

is reasonable to make these methods robust and aware of symmetry

as well.

In their seminal work [8], Fuchs et al. present the SE(3)-equivariant

transformer. This work builds on the work of Thomas et al. in [15]

to build equivariance into the standard transformer architecture.

The main contribution of this work is in developing a new, equi-

variant method of calculating attention weights. To do this, the

authors combine features of Clebsh-Gordon coefficients, radial neu-

ral networks, and spherical harmonics into the computation. The

emphasis is, as expected, on aggregating spherical and angular-

invariant features into the attention given to a 3D point’s neigh-

bors. This makes intuitive sense, as if the whole coordinate frame

shifts, a point should not change the weight it assigns to its neigh-

bors. The authors also make an interesting note to relate the new

𝑆𝑂 (3)-equivariant method to prior work: with no weights at all, the

attention mechanism degenerates to the same tensor convolution

presented in [15]; with weights independent of spatial coordinates,

it degenerates to the conventional attention mechanism.

The authors test the 𝑆𝐸 (3)-transformer in three tasks where

equivariance is desireable – trajectory prediction, object recogni-

tion, and chemical property prediction. They find that it outper-

forms non-equivaraint methods in all three, though they do not

seem to use any previous equivariant models as benchmarks.

Query-Based Transformers for Viewpoint Equivariance Build-
ing off of the work of [8], Chen et al. [4] introduce a viewpoint-

equivariant transformer. This somewhat mirrors the interplay be-

tween object rotation and camera viewpoint in [6], but this is more

complex considering the camera is not centered on any one object

in the scene. Alongside [10], this is the second presented paper to

deviate from now-standard 𝑆𝑂 (3) and 𝑆𝐸 (3) equivariances.
The novel contribution of this work is threefold: a geometry-

based positional encoding as an input to the transformer, a point-

and view-based query system to the equivariant transform (es-

sentially, view-conditioning the transformer output), and a novel

viewpoint equivariant loss. More specifically, the viewpoint loss

is based on a Hungarian matching (assignment problem match-

ing) between ground truth and predicted bounding boxes across

viewpoints.

2.5 Equivariant Transformers in Alternative
Domains

Unified Reconstruction & Rendering As there seems to be sig-

nificant overlap between the tasks in the previous two sections, we

examine a work that unifies the two tasks under a single method.

Intuitively, rendering from few images and reconstructing shape

seem to be very related tasks, if not the same in terms of geometric

understanding. [19] extends equivariance to ray space, the space

of light rays moving within the scene. In this domain, the Xu et

al. construct a “light field" that is equivariant to coordinate system
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from multiple views and only relative data about camera positions.

To do this they introduce new definitions for both convolution and

attention in the ray space, and use to construct the equivariant

light field transformer. In the work’s experiments, the method is

shown to be effective in both equivariant neural rendering and

equivariant reconstruction. In practice, the mechanisms are slightly

different because 3D reconstruction requires point sampling and

a conversion from ray space to R3
, and only employs cross atten-

tion between point and ray domains before producing an SDF. In

contrast, equivariant rendering does not require this discretization

until the final image is produced, and so can remain almost entirely

in the ray space. After a ray space convolution, present in both

pipelines, the rendering process employs a ray-to-ray equivariant

transformer before transforming to the pixel domain.

Occupancy Field Transformer As a small addition to this section,

it is also worth mentioning TF-ONet by Chatzipantazis et al. [3].

This network models 3D objects by their “occupancy field," or prob-

ability distribution over space. This recent work achieves better 3D

reconstruction results than many previous methods, in part due to

the novel approach of embedding local shape features and main-

taining equivariance with respect to them. This is mainly included

as another example of equivariance in an alternative domain.

2.6 Equivariant Neural Fields
Neural Fields [18] provides a detailed survey about neural field

representations in computer vision and in other domains. From [18]:

a field is a quantity that takes on a value at every position in space

or time. For example, a sound is a field with quantity amplitude.

An image is a field with quantity intensity. Many other quantities

can be represented by fields, and neural fields (NFs) are those that
are parameterized by a neural network. These can be written as

𝑓𝜃 : R𝑑 → R𝑐

Conditional Neural Fields Extending NFs, we can take a collec-

tion of neural fieldsD, and represent each with a latent 𝑧𝑖 by fitting

a conditional model (CNF):

D = {𝑓𝑖 : R𝑑 → R𝑐 }𝑁𝑖=1
∀𝑥 : 𝑓𝑖 (𝑥) ≈ 𝑓𝜃 (𝑥 ; 𝑧𝑖 )

As mentioned by [18], this enables novel approaches to solving

tasks involving neural field tasks such as segmentation and clas-

sification through learning with functa [7]. What [7] proposes is

meta-learning – learning on the set of learned latents that represent

input data.

Equivariant Neural Fields The work by Wessels et al. in [17]

extends CNFs to geometric reasoning by introducing equivariance.

They call this steerability of the field – a common term meaning

that rotating the input allows the output to be “steered". Specifically

for ENFs, the authors impose steerability between the latents and

the fields, so if one rotates, so does the other. The implementation

of this is surprisingly simple. In large part, the authors look for a

maximally informative and invariant replacement for geometric

pairs (𝑥𝑚, 𝑝𝑖 ), representing the coordinate and pose between two

points. Maximally informative means the descriptor is unique for

each ordered pair so long as they are not the same up to a group

action. In symbols,

𝑎(𝑥𝑚, 𝑝𝑖 ) = 𝑎(𝑥 ′𝑚, 𝑝′𝑖 ) ↔ ∃𝑔 ∈ 𝐺 : 𝑔𝑥𝑚 = 𝑥 ′𝑚, 𝑔𝑝𝑖 = 𝑔𝑝′𝑖

It turns out that 𝑎(𝑥𝑚, 𝑝𝑖 ) = 𝑝−1
𝑖

𝑥𝑚 is a perfect candidate, since 𝑝𝑖
is the group action 𝑔. [17] systematically replaces these ordered

pairs with this invariant, leading to equivariance. Like some CNF

architectures, ENFs are also based on spatial attention mechanisms

and so fall under transformer methods. Because of the widespread

applicability of neural fields, [17] performs a wide range of exper-

iments from flood map segmentation to climate forecasting. The

authors found that on geometrically symmetric tasks, ENFs were

the state of the art method. ENFs also outperform [7] on some

tasks involving complex geometry, but neither can beat tailor-made

models.

ENFs for Partial Differential Equations In what appears to be

a parallel work from the same group that published [17], there is

another work that applies ENF to solving PDEs. In [11], Knigge et

al. look at the problem of equivariant PDEs – that is, PDEs which

themselves have some steerability. If these are modeled with some

network 𝐹𝜓 , their solutions can be found using neural field methods.

Just as we saw how Conditional Neural Fields can model functions

across time and space parameterized by a latent 𝑧𝑖 , we can think

of PDEs as flows in the latent space – a set of latents {𝑧𝜈
𝑖
}𝜏
𝑖=1

given

observations {𝜈𝑖 }𝜏𝑖=1. Formally, the optimization problem is

min

𝜃,𝜓,𝑧𝜏
E𝜈∈𝐷,𝑥∈X,𝑡 ∈⟦𝑇⟧



𝜈𝑡 (𝑥) − 𝑓𝜃 (𝑥 ; 𝑧𝜈𝑡 )


2
2
, (2)

where 𝑧𝜈𝑡 = 𝑧𝜈
0
+
∫ 𝑡

0

𝐹𝜓 (𝑧𝜈𝜏 )𝑑𝜏 (3)

with 𝑓𝜃 (𝑥 ; 𝑧𝜈𝑡 ) decodes 𝜈𝑡 from latent 𝑧𝜈𝑡 and 𝐹𝜓 maps a latent to its

temporal derivative:

𝑑𝑧𝜈𝜏

𝑑𝜏
=𝐹𝜓 (𝑧𝜈𝜏 ), modelling the solution as flow in

latent space starting at the initial latent 𝑧𝜈
0
. Much of this paragraph

is adapted from [11], referencing work from the pre-equivariance

work [20]. Recall that ENFs extend from CNFs using the inverse

of the group action 𝑝𝑖 , so in solving PDEs, the method similarly

looks at geometric pairs appearing in the implementation of 𝑓𝜃 and

replaces them with the invariant 𝑎(𝑥𝑚, 𝑝𝑖 ).
As experiments, the authors evaluate PDEs on irregular domains,

such as the heat equation on 𝑆2 (the surface of a sphere), Navier-

Stokes on T2 (the 2-dimensional torus), and convection in a 3D ball.

They also test superresolution on 𝑆2. The method achieves state of

the art on all tasks. Notably, they also generate a dataset specifically

to test equivariance by adding a pulse to the initial conditions –

any method that does not exhibit equivariance will fail to produce

an accurate solution. This is a great resource for future equivariant

PDE methods.

3 Proposed Directions & Problem Definitions
(1) PI-ENF: Physics-Informed Equivariant Neural Field.

This idea borrows from the advancements in PINN, PINO,

and PIDeepONet over their non physics-informed counter-

parts. As we saw in the workshop presentation of the ENF

architecture, it originally emphasized solving equivariant dif-

ferential equations – those equations with operators that are
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equivariant to rotations and translations. However, the au-

thors deliberately use only a single loss term to encourance

smooth implicit latents in the model. It would be interesting

to investigate how a physics-based loss might affect perfor-

mance here. Would it improve performance on these equi-

variant processes? Would it impact the latent characteristics

that the authors originally controlled for?

(2) ENFs for Gravitational Lensing In the spirit of applying

themethod to a more concrete scientific problem, rather than

to general object detection or solving equations, it may be

interesting to epxeriment with ENFs for gravitational lensing

applications. Cheeramvelil et al. [9] showed the performance

gains in applying equivariance to dark matter lensing prob-

lems, but used earlier architectures such as steerable CNNs

and equivariant transformers. It will be very interesting to

see if more sophisticated recent methods discover more areas

of gravitational lensing in telescope data. Of course, faraway

galaxy-scale images come in only one angle, so it is quite

possible that earlier 2D equivariance architectures perform

quite well in comparison to these 3D-focused methods.

(3) VENF: Viewpoint Equivariant Neural Field for 3D Ob-
ject Detection. This idea combines [4] and [17] to apply

ENFs similarly for robotics. The goal is to have the 3D output

detections parameterized by the viewpoint, but to achieve

this through the ENF framework rather than through a typi-

cal transformer architecture as in the original VEDet paper.

Of the three proposed research directions, it seems that (3) will

be the most challenging to implement because of the complexity

in [4]. To adapt each of those innovations to the domain of neural

fields may be difficult, especially because ENFs are also based on

transformers. Discerning the differences in paradigms may be dif-

ficult given the similar architecture. In contrast, (1) and (2) build

significantly on two or more prior works, and the advancement is

in combining those architectural pieces. For the following proposal

details, we will address (1) and (2) and leave (3) as future work.

One advantage of all three proposed directions is that they seek

to improve performance on existing tasks, which often already have

established metrics and datasets. This gives some support to the

research process.

4 Methods
4.1 Physics-Based Loss for ENFs
The intuition behind this method, which addresses proposed di-

rection (1), is the same as many other physics-informed methods.

Simply, if the current ENF system uses only data-based reconstruc-

tion loss to train the latents. In the case where we are trying to solve

PDEs with this method, including a dynamics based loss will almost

surely improve the solution accuracy by including that information

in the structure of the learned latent space.

[14] explores the relationship between “true" and “latent" dy-

namics, like the integral equation 3, in greater detail than [11].

Suppose there is an autoencoder that relates input data x ∈ X
and latent representation z ∈ Z by

x = 𝜓𝜃 (z) = 𝜓𝜃 (𝜙𝜃 (x)) ≈ 𝜓𝜃 (𝜓−1
𝜃

(x))

Similarly, the true dynamics of 𝑥 and latent dynamics of 𝑧 are

counterparts in the different spaces

dx(𝑡)
d𝑡

= f (x(𝑡)) ↔ dz(𝑡)
d𝑡

= h(z(𝑡))

Then,

h(z(𝑡)) = dz
d𝑡

=
dz
dx

dx
d𝑡

= ∇𝜙𝜃 (x(𝑡))𝑇 f (x(𝑡))
, allowing us to relate the original forcing function f to the latent

forcing function h and impose physics based loss analogously to

physics-informed neural networks [12].

Some difference in adapting to this method are worth noting.

[14] studies latent space dynamics in an autoencoder context, in-

troducing the learned encoder and decoder 𝜙𝜃 and𝜓𝜃 . In a neural

fields context, the latents are generated by meta-learning on neu-

ral implicit representations to produce a latent-conditioned field

𝑓𝜃 (𝑥 ; 𝑧), as discussed in 3.6. This is the analog of the encoder func-

tion whose Jacobian relates the true and latent forcing functions.

Second, for ENFs ℎ is approximated by a neural ODE as shown

in eq. 3. It will be interesting to see if using the computed latent

forcing function as a replacement for this neural ODE or if using it

to impose a physics-based loss on latent collocation points leads to

better performance.

It remains to be fully worked out how the gradient ∇𝜙𝜃 (x(𝑡))
can be taken in the ENF architecture, which is a crucial piece of

work.

4.2 Classification with ENFs
The associated blog post to [17] describes ways classification can

be performed from different kinds of Neural Field models. To quote

from there:

Using NeFs in downstream tasks. For "conventional"

NeFs, the weights 𝜃 𝑗 are used as input to a down-

stream model that can operate on the computational

graph of the neural field. For CNFs, the latent vectors

𝑧 𝑗 are used as representation instead, allowing the

use of simple MLPs. In ENFs instead the latent point

sets 𝑧 𝑗 are used as input to the downstream model,

allowing for preservation of geometric information in

the downstream task through the use of equivariant

graph models.

Thus, to extend the work of [9] with ENFs, we may simultane-

ously or sequentially train an equivariant graph neural network

(EGNN) classifier on the latent point cloud of the ENF model. The

EGNN architecture introduced in [13] allows us to carry through

the equivariance of the method to the classification, so that the

transformation of the input propagates not only through the ENF

but also through the equivariant classifier. In many cases, we want

the classifier to be invariant, a special case of equivariance.

4.2.1 Choice of Bi-invariant. The choice of bi-invariant is a critical
piece of training the ENF. Since 𝑆𝐸 (2) is the desired invariance in

the classification problem, the bi-invariant is chosen accordingly.

As described in [17]:

a𝑆𝐸 (2)
𝑚,𝑖

= R𝜃𝑖 (𝑥𝑚 − t𝑖 )
This is compared in an experiment using the translational bi-

invariant rather than the roto-translational bi-invariant.

https://gram-blogposts.github.io/blog/2024/equivariant-neural-fields/
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4.2.2 Downstream Classifiers. Once the latents are trained using

reconstruction loss, a downstream classifier is trained with paired

class data to classify from those latents. Since the structure of

ENF latents is a point cloud in the field domain, a simple message

passing neural network can be used, or, following the authors’

tutorial notebook, the 𝑃Θ𝑁𝐼𝑇𝐴 architecture from [1] can be used

for best performance. A later experiment is focused on ablating

the perfomance between these two in the gravitational lensing use

case.

4.3 Evaluation
Both [11] and [9] use relatively simple evaluation metrics. [11]

uses point-wise MSE on the output solutions. [9] uses AUC and

accuracy for classification, and RMSE, MSE, MAE to measure per-

formance in regression agains the lensing mass. All metrics can be

re-implemented easily.

4.4 Dataset
Both of [9][11] generate their own datasets and describe in detail

how to recreate them.

• [11] uses a combination of py-pde and Daedalus to set up

and solve complex PDEs for training and evaluation. The

dataset shape is (1024+ 128, 20, 64, 64) – 1024+128 (train/test

split) trajectories of 20 states each, each state 64x64.

• [9] simulates dark matter gravitational lensing using custom

code based on the lenstronomy package [2]. This dataset

was obtained from the DeepLense Collaboration team [16]

and was used in the experiments here.

4.5 Data Augmentation
𝑆𝐸 (2) invariance is the desired property for gravitational lensing

problems. In order to ensure that these transforms exist in the data,

each row of the DeepLense dataset is augmented with random

rotation and translation copies, in order to better train the neural

field. No augmentations are needed for the PDE dataset.

4.6 Computing Resources
[9] made mention of training on multiple A100 GPUs, which are

available at any cloud provider today. There are grounds to believe

that neural field-based methods will be significantly more costly to

train, because of the neural implicit representations of functions

requiring training before the model itself. However, this should also

be within the margin of the provided computing resources. Neither

ENF paper discusses the compute required.

5 Experiments
Here, we perform one main experiment: training the full ENF

pipeline and downstream 𝑃Θ𝑁𝐼𝑇𝐴 classifier on Model I data used

by [9]. This dataset is the base case in that work, without modifi-

cations that approximate meant to approximate either a Euclid or

Hubble survey. This experiment has three parts: (1) fitting the base

neural fields with reconstruction loss, to generate implicit represen-

tations of the image dataset, (2) fitting the ENF to generate latent

point clouds for each neural field representation, and (3) training

the 𝑃Θ𝑁𝐼𝑇𝐴 MLP as a classifier in the ENF latent space.

We find that step (1) of the experiment, fitting the neural fields,

converges very quickly. Though this experiment was run for 30

epochs, the same as the authors of [17] used for STL-10 classifi-

cation, the MSE only majorly improves over the first 3 epochs to

the order of 1e−10 and improves only minorly after than that. The

ENF fitting is not modified from default values in [17], given that it

is tuned for the NIRs produced by step (1). Step (3) is again much

quicker to converge than expected, reaching 100% accuracy in just

3 epochs rather than the prescribed 30 in [17].

The table below is partially reproduced from [9] to show existing

methods compared to ENFs.

Model Name Accuracy

ResNet50 96.86

C8Steerable CNN 99.02

Harmonic Net 90.95

Equivariant Transformer 92.413

Equivariant Neural Field 100
This work seems to be the first to reach 100% accuracy on this

simulated dataset, and outperforms all those previously compared

in [9].

6 Conclustion
Overall, in this work, we take the new equivariant neural field

(ENF) architecture and propose three major developments that can

be made for applications in the areas of physics, astronomy, and

robotics. We pursue the first application in dark matter cosmology,

and show that leveraging equivariant methods leads to the better

performance, despite the higher computational cost associated with

them. Here, we show that the ENF architecture proposed in [17]

attains the best possible classification accuracy of dark matter sub-

structure. More generally, in applications where compute is less

of a concern than accuracy, as in offline physics and astrophysics,

these methods are viable for the best possible results.

7 Future Work
There are three areas for related work:

(1) Ablations of downstream classifiers: it would be interesting

to see how other classifiers perform on the generated latents

from the ENF method. Given their relatively simple content,

it is reasonable to assume that the latents do not contain

so much geometric content so as to invalidate simpler MLP

approached. It would be interesting to see the performance

of methods like MLP and equivariant transformer on this

latent dataset.

(2) Extension to other simulated datasets. DeepLense [16] pro-

vides 4 different simulated datasets, all tweaked to simulate

different cosmological surveys. However, the Euclid survey

in [9] shows higher accuracy by all models, so this model

may continue to perform at the 100% mark.

(3) Other applications of ENFs are proposed in this report which

should be pursued. Physics-informed ENFs are a promising

avenue for PDE solving.

https://colab.research.google.com/gist/david-knigge/8e38ace480e2fe19cfe52e2570e639dc/explainer_enf.ipynb#scrollTo=4eacab66ec975786
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