
1. Introduction
The question of how to capture not only what we

see in everyday life, but also well beyond that, has
enamored people for some time. While it is impressive that
we can capture the world around us at all, we are faced with
how to extend our sight using computer imaging techniques
in many applications. Capturing the internal structure of
objects is the motivating problem for this work, and reveals
an incredibly rich domain of research in tomographic
reconstruction.

We approach this problem by sending
high-frequency radiation, often X-rays, through the objects
we want to analyze. Because this high-energy light can pass
through most materials, we can measure its intensity on the
other side of the object. However, such a process will, at
most, produce a projection of the object in the plane or on a
line. To acquire more information about the object in
question, we can rotate it and repeat this process and
continue until we have rotated 180º before we start seeing
flipped copies of existing data.

The problem that arises is how to compose data
collected in this form to understand the internal structure of
the object under experiment.This problem may seem purely
academic but actually has a considerable impact on science,
business, and medicine. This paper focuses on the medical
side of this in applications such as Computed Tomography
(CT) or Magnetic Resonance Imaging (MRI). With these
systems, safely sending radiation or magnetism through the
human body can generate these projections, which we can
then reconstruct to see a whole world of new images.

Depending on the approach, reconstruction from
projection comes down to either (1) a signal processing
problem, (2) an iterative error minimization problem, or (3)
a deep learning problem to translate between projection and
spatial domain data. Each of these 3 approaches is closely
related to methods in other areas of computer vision, and
the richness of this problem yields multiple ways to
approach it. It is interesting that one problem can motivate
so many different methods, and that continuous advances
are being made to invert the operation of projection.

In surveying three methods that correspond to the
aforementioned three perspectives on this problem, we find
the work of some groups to be particularly relevant. Deans
(1984) approaches this problem as inverting the
mathematical Radon transform and investigates the signal
processing challenges that come with that perspective.
Hounsfield and Gordon et al. originally approached this
problem iteratively and from an error minimization
standpoint. Their work was key in the first-ever CT scans

and is the basis for our implementation of iterative
algorithms. Finally, we acknowledge Würfl et al. for their
work in Deep Learning Computed Tomography. Their
perspective brings a more modern approach to a long
standing problem, and inspired us to also investigate using
deep learning for image reconstruction.

To understand the evolution of these algorithms,
from all three perspectives presented, our approach was
three-pronged.We first approached the problem
geometrically, considering projection angle and ray
direction. Next, we approached the problem purely
numerically, beginning with a random image and
minimizing discrepancies with projection data iteratively.
Finally, we implemented a deep learning model to learn the
correspondences between projection and image data.

2. Approach
This research paper presents a comprehensive

survey of three distinct techniques for Image
Reconstruction: filtered backprojection, algebraic
reconstruction technique, and convolutional neural network.
Below is the approach we took in understanding and
implementing each of these three methods.

2.1. Filtered Backprojection
As the projections accumulate from different

angles, they are organized in a figure called a sinogram.

Figure 1: An example sinogram (left), sinogram for a
single point (right).

Figure 1 shows the sinogram for a full image as
well as the sinogram for a single white point in a fully black
image. The right side of the figure gives us some intuition
for why the content of a sinogram appears so sinusoidal,
hence the name. Filtered backprojection works by looking
at each projection (1 projection per deg, here and hereafter)
and “undoing” the projection that produced it, after some
sharpening operations.

First, the sinogram is filtered to remove
low-frequency components. To do this, the fast Fourier
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transform of each sinogram row is taken, a ramp filter is
applied, and the transform is reversed. From the theory of
signals, we know that the ramp filter, described in equation
(1) below, approximates a high-pass filter.

(1)

Without the filtering operation described in
equation (1), the reconstruction using the following steps
produces a blurry result due to a phenomenon called “1/r
blurring” that occurs when combining projections.

After the filtering operation, shown in Figure 2, the
sinogram is ready to be backprojected across the image
plane. To do this, we compute which direction the
projection came from through some conversion factor. In
this case 1 sample was taken per degree, so the projection
number corresponded directly to the orientation of the
projection. Row by row, each projection is re-oriented to the
direction it was taken and “smeared” across the
reconstructed image. This process can be seen for a single
row in Figure 3.

Figure 2: The sinogram from figure 1 after
the filtering operation.

Figure 3: A single sinogram row “smeared” across the
reconstructed image.

When this is done for all rows in the sinogram and
the “smears” are added together, an approximation of the
original image takes form.

2.2. Algebraic Reconstruction Technique (ART)
Next, we considered an older algorithm which

views image reconstruction as an optimization problem.
This approach requires somewhat of an

understanding of operators and the objects they act on, as it
treats both projection and (unfiltered) backprojection as
linear operators A and A^T, respectively, on images. It also
provides an interesting perspective on the problem: we are
trying to iteratively invert operator A, and it becomes clear
that the transpose operation is significantly different. This

provides some insight about Filtered Backprojection as
well, as it shows that simply backprojecting is not enough,
and some other steps (filtering) must be taken to better
approximate A^-1.

We begin with an arbitrary image as our guess for
the reconstruction (here, we simply begin with a black
image – all zeros). From there, we perform projections of
this guessed image to produce a guessed sinogram, which
we can compare to the sinogram data that we have been
given. By taking the difference of the two sinograms, we
obtain a new ‘difference sinogram,’ which we can then
backproject to the image space and add to our current
estimate. This process continues until a desirable result is
reached. The algorithm is described in equation (2) below.

(2)

In equation 2, x is our estimate of the image, b is
the given sinogram, A is the projection operator, A^T is the
backprojection operator, and λ is a learning rate parameter
similar to gradient descent.

To implement these abstract operators A and A^T,
we adapted the algorithm to work not with vectors and
matrices, but instead with images and
projection/backprojection code from our work on filtered
backprojection. Specifically, A represents an application of
the projection function to create a sinogram, and A^T
represents the backprojection function using repeated
smearing. It is often the case in ART implementations that
these operators are hidden away with external libraries, but
it was important here and part of our value-add through this
project to use transparent code from the top down.
Following that ideal, we treated ART as a higher-order
algorithm acting as a controller for the backprojection
algorithm from 2.1.

We can see that the denominator of the fraction
does not change from iteration to iteration, and represents
what happens to an image of all 1s (all white) when
projected to a sinogram and then backprojected.

Figure 4: The denominator image in ART.

Figure 4 shows how the composed operation
A^T(A) impacts a pure white image. It is clear that
intensities near the corners are attenuated considerably. In
some sense, this is a kind of “eigenvalue” image for the
operator A^T(A), as it shows the scaling applied to each
location. To correct for this, we divide by this scaling image
after generating our “update image” in the numerator.
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Figure 5 shows ART reconstructions of the famous
Shepp-Logan phantom after one and 200 iterations.

Figure 5: ART reconstruction of Shepp-Logan
phantom after one (left) and 200 (right) iterations.

2.3. Convolutional Neural Network
Convolutional Neural Networks are a relatively

new technique. Convolutional Neural Networks are a type
of neural network designed to work with structured data
such as images. Through a series of convolutional layers,
the network learns to extract and identify key features from
an input image. These features are then passed through a
series of layers in the model, ranging from 2D convolutional
layers to fully connected layers to make predictions based
on the input data.

Thus far in computer vision, Convolutional Neural
Networks have been used in a wide range of applications.
This includes self-driving cards, medical imaging, and
facial recognition.

Our goal with the Convolutional Neural Network
was to learn the mapping between the sinogram of an image
and the reconstructed image. Once trained, the network
would be able to reconstruct high-quality images, simply
from the sinogram of the image. While this technique can
be challenging to implement, it has the potential to produce
some of the best reconstructed images in limited conditions.

The model architecture includes a series of
convolutional layers, followed by a fully connected layer,
and then a rectified linear unit layer. As described in the [8],
the following figure is a visual representation of a parallel
beam architecture.

Figure 6: CNN architecture for image reconstruction.

The implementation of the model involes utilizing
the Keras and TensorFlow library. The input images were
first preprocessed before being split into testing and
validation sets. The preprocessing includes ensuring that all
the images were all the size and normalizing pixel values to
between 0 and 1.

The model was compiled with a mean squared
error loss function and the Adam optimizer. This was found

through various experimentation, with loss functions such
as categorical cross-entropy.

The mean squared error loss function calculates the
average squared difference between the predicted and true
outputs of the model. Larger errors are more heavily
penalized. The ultimate goal of the model is to minimize
loss. The model does so through iterations of minimizing
the loss function through backpropogation and gradient
descent.

We made the decision to utilize the Adam
Optimizer as opposed to the SGD optimizer because Adam
has better momentum and thus tends to converge faster. It
also allows for the usage of a lower learning rate
(approximately in the range of 0.001 - 0.00001).

The model was trained for 10 epochs using a batch
size of 32, and the validation loss and accuracy were
recorded after each epoch.

3. Experiments

3.1. Filtered Backprojection Error

To quantify the error of the FBP algorithm, we computed
the mean absolute error (MAE) between the outputted
image and the original projected image.

Figure 7: Reconstructed (left) and error image (right).

The right side of figure 7 shows the error image,
computed as reconstructed minus input. We can see that the
brightest regions are reconstructed almost perfectly (black
error), while the darker regions are a little darker than the
original (white error).

Overall, the MAE was 0.07 on a dynamic range of
0 to 1 (float64 image). This is more than enough for a good
understanding and view into areas we cannot normally
capture.

3.2. Algebraic Reconstruction Surface
Parameterization

The ART algorithm is dependent on two main
parameters – number of iterations and learning rate lambda
– as described in the section 2.2. To understand where the
algorithm performed most optimally for our inputs, we
plotted the error against each of these parameters.

First, we quantified the error in largely the same
manner as in section 3.1, by calculating the mean value of
the update term (everything added to x in each iteration).
We deliberately did not choose mean absolute error here, as
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we thought it may be possible that for high learning rate
lambda, the algorithm actually overshoots the true
reconstruction on the initial iteration, leading to negative
errors. The results of this experiment are shown in figure 8
below.

Figure 8: ART mean error vs iterations only (top); vs both
iterations and learning rate lambda (bottom).

As expected, the error declines with increasing
iterations, regardless of the learning rate. This is
unsurprising for an error minimization algorithm.

3.3. Neural Network Validation

The network was trained on a set of dog images, as
well as their corresponding sinograms. The dataset was split
into training and validation sets with a ratio of 80:20 using
the train test split method from the scikit-learn library. This
data makes sense because the goal of our Convolutional
Neural Network is to predict an original image based on the
sinogram of the image, and we were able to train the model
through feeding in a dog image from the dataset, calculate
the loss of the original dog image with the model’s
predicted output, and then backpropogate to minimize that
loss.

Figure 9: Results of CNN from validation set.

The above image is the result of our model’s
output on the validation dataset. Ground truth image are the
original image from the dog dataset, while reconstructed
image is what the CNN was able to create from the
sinogram. This is a qualitative measure of success, as we are
able to see how closely the reconstruction and original
images are matched.

A potential downside of this qualitative measure is
that the model is able to perform well on on validation data
of dog images, but it may not be able to perform as well on
other images. This is a potential next step in our project, as
we look towards further testing and fine tuning of this
model.

We utilize several factors to conclude our success
in quantitative measures, We attempted to attain a training
accuracy of 80% and a validation accuracy of atleast 75%.
Furthermore, we strived to achieve a Mean Squared Loss
Error of no more than 20%. Although there is no limit to
how much we can vanish our MSE, 20% is a feasible task to
achieve. Based on these targets, we achieved validation loss
and accuracy as 35.829% and 99.998% respectively.

4. Implementation

For filtered backprojection, the code builds off of
[2] to simulate tomographic projection and generate
sinograms. The code borrowed from [2] also handles
padding and image edge cases. The rest of the FBP and
ART algorithms were implemented from the theory and
converted by us to code, though the core math for ART does
converge with some other implementations due to its
widespread usage. The CNN portion also was built from
bottom up, with the help of some course examples from
EECS 442 and EECS 445.

5. Data

The data that we utilized in the Convolutional
Neural Network was a dataset of twelve thousand images of
dogs. This dataset was obtained through a previous project
for U-M EECS 445 (Project 2, Fall 2022) by team member
Abhinav Thakur.
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